On Complexity of Minimum Leaf Out-branching Problem

نویسندگان

  • Peter Dankelmann
  • Gregory Gutin
  • Eun Jung Kim
چکیده

Given a digraph D, the Minimum Leaf Out-Branching problem (MinLOB) is the problem of finding in D an out-branching with the minimum possible number of leaves, i.e., vertices of out-degree 0. Gutin, Razgon and Kim (2008) proved that MinLOB is polynomial time solvable for acyclic digraphs which are exactly the digraphs of directed path-width (DAG-width, directed tree-width, respectively) 0. We investigate how much one can extend this polynomiality result. We prove that already for digraphs of directed path-width (directed tree-width, DAG-width, respectively) 1, MinLOB is NP-hard. On the other hand, we show that for digraphs of restricted directed tree-width (directed path-width, DAG-width, respectively) and a fixed integer k, the problem of checking whether there is an out-branching with at most k leaves is polynomial time solvable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimum leaf out-branching and related problems

Given a digraph D, the Minimum Leaf Out-Branching problem (MinLOB) is the problem of finding in D an out-branching with the minimum possible number of leaves, i.e., vertices of out-degree 0. We prove that MinLOB is polynomial-time solvable for acyclic digraphs. In general, MinLOB is NPhard and we consider three parameterizations of MinLOB. We prove that two of them are NP-complete for every val...

متن کامل

Minimum Leaf Out-Branching Problems

Given a digraph D, the Minimum Leaf Out-Branching problem (MinLOB) is the problem of finding in D an out-branching with the minimum possible number of leaves, i.e., vertices of out-degree 0. We prove that MinLOB is polynomial-time solvable for acyclic digraphs. In general, MinLOB is NP-hard and we consider three parameterizations of MinLOB. We prove that two of them are NP-complete for every va...

متن کامل

Parameterized Minimum Leaf Out-Branching Problems

Given a digraph D, the Minimum Leaf Out-Branching problem (MinLOB) is the problem of finding in D an out-branching with the minimum possible number of leaves, i.e., vertices of out-degree 0. We describe three parameterizations of MinLOB and prove that two of them are NP-complete for every value of the parameter, but the third one is fixed-parameter tractable (FPT). The FPT parametrization is as...

متن کامل

On Out-Trees With Many Leaves

The k-LEAF OUT-BRANCHING problem is to find an out-branching, that is a rooted oriented spanning tree, with at least k leaves in a given digraph. The problem has recently received much attention from the viewpoint of parameterized algorithms. Here, we take a kernelization based approach to the k-LEAF-OUTBRANCHING problem. We give the first polynomial kernel for ROOTED k-LEAF-OUT-BRANCHING, a va...

متن کامل

Clique-width: When Hard Does Not Mean Impossible

In recent years, the parameterized complexity approach has lead to the introduction of many new algorithms and frameworks on graphs and digraphs of bounded clique-width and, equivalently, rank-width. However, despite intensive work on the subject, there still exist well-established hard problems where neither a parameterized algorithm nor a theoretical obstacle to its existence are known. Our a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 157  شماره 

صفحات  -

تاریخ انتشار 2009